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6 is an interesting number. Beside 6 itself, it has factors 1, 2, 3 and if you add 
these together you get back to the original number, 6. That doesn’t work for 
too many numbers, so mathematicians call 6 a 'perfect' number. Being 
perfect, it obviously follows there can be only six planets. 

As an argument, this remains as true, or 
false, today as when it was first stated, a 
time when only six planets were known. 
What’s changed is not the philosophical 
argument (which has been quietly 
forgotten) but the scientific discovery that 
there are more than six planets. After 6, 
the next perfect number is 28 and then 
496. Perfection is very rare among 
numbers - only thirty-seven perfect 
numbers are known. Rarer, it would 
appear, than entire planetary systems, 
some 88 of which have been discovered 
recently in our stellar neighbourhood.

A hundred years ago Simon Newcomb, a 
leading academic, published a book in which he 
calculated that flying machines were a physical 
impossibility and that the best alternative would 
be a carriage chained to teams of trained birds. 
Almost before the learned man’s ink was dry, 
Orville and Wilbur Wright, with rather less 
academic pedigree, built and flew the world’s 
first heavier-than-air flying machine. Still, 
scepticism about flying machines persisted. But 
then to this day, some people insist the earth is 
flat or that man did not set foot on the moon.

Several years before the outbreak of World War II 
the British government politely declined stolen 
secrets of the German cipher machine, Enigma. 
Even in possession of a complete Enigma, 
leading code-breakers had calculated that, 
without a knowledge of the daily machine 
settings, it would take hundreds of years and 
massive resources to decode even a single 
message. Until as late as July 1939, the British 
were completely unaware that three young Polish 
mathematicians, with virtually no resources, were 
breaking into the Enigma traffic almost on a daily 
basis.

The birth of a planetary system



Sometimes, proving the impossible seems significantly harder than doing it.

In 1967 Jocelyn Burnell recorded an extra-terrestrial radio signal showing 
highly unnatural features. Very precisely timed radio pulses, not at all like the 
typical “wail and howl” signals generated by the sun, stars and planets, 
suggested to some, evidence of an extra-terrestrial intelligence. At first 
astronomers suspected signal interference from the burgeoning digital radio 
technology of the time. This possibility was eliminated by the discovery that 
the signal faded whenever the moon obstructed a particular point in the sky. 

For a while the scientific world held its breath while observers and theorists 
feverishly scrambled to explain the signals in terms of extra-terrestrial 
messages or stellar-like objects operating at the limits of the known laws 
science. Eventually it was shown that such signals could be generated by 
highly collapsed stars which, though rare, are a natural product of stellar 
evolution. This view was confirmed when theorists calculated that the rate of 
rotation of such stars would have to decrease, causing the interval between 
radio pulses to increase. The slowing down has been subsequently confirmed 
by observations to a very high level of precision. Today these objects are 
known as pulsars. 

Precisely timed radio pulses are rare in the universe, which is why huge 
scientific interest was aroused by the discovery of pulsars. The receipt of the 
following signal, repeated over and over again, would cause even greater 
scientific interest simply because its generation by natural sources would be 
so hard to explain scientifically. Cosmological objects simply do not increment 
up to a certain number and then start again. This is more the product of a 
digital phenomenon. 

Figure 1.

The reception of such an extra-terrestrial signal would be a startling event, yet 
its information content is not particularly profound. After the initial shock, we 
would be keen to learn of something a little more than a primitive allusion to 
the first nine counting numbers.

In exchange however, we might expect to have to work harder to decode the 
rest of the message. The reason is straight forward. The above method of 
transmitting the first nine counting numbers, while intuitively obvious and 
mesmerising, is a very inefficient method of communicating. The problem is 
simply that the length of the message increases in direct proportion to the size 
of the numbers. Even the Romans gave up after three, preferring to use a 
simple code for larger numbers:

       I       II      III      IV       V       VI        VII        VIII       IX     



We, in turn, should expect a much more efficient and systematic method of 
encoding information. Whether as senders or receivers then, we need to think 
about the coding and decoding of information before we can proceed with the 
rest of the message.

Modern life is totally dependent on binary coding, 
enabling everyday tasks such as using a mobile, 
setting a timer or typing a letter. Actually, 
pressing the “1” button on a keypad, 
electronically generates the binary code 
00110001, a form more easily handled by digital 
electronic devices (1 = pulse, 0 = no pulse). A “2” 
generates the pulse pattern 00110010.

Quite why anyone might choose to represent 1 
by 00110001 is no longer very obvious. The code 
was first developed in the 1960’s to allow 

geographically distant computers to exchange textual data, A = 01000001, a = 
10100001, etc. In addition, the code caters for various unprinted characters 
such as line feed, carriage return, page feed, end of message, etc. In the end, 
it is just a code and any other code is perfectly usable. However, having 
devised such a code, it makes sense for everyone to stick with it (just as, 
having decided on which side of the road to drive - one might think - it makes 
sense to drive on that side). 

This particular code, known as ASCII (American Standard Code for 
Information Interchange) maps each of 256 (= 28) characters to a distinct 8 bit 
binary number or pulse pattern. ASCII represents an expanded alphabet - 
fifty-two upper and lower case letters, ten digits 0 to 9, the space character, 
punctuation and various other symbols, all assembled into a 256 character 
alphabet (see appendix). Having agreed a binary code, it is very simple 
electronically to encode and decode strings of symbols or pulses.

By transmitting the above signals repeatedly we might convince ourselves, 
and any interested receiver, that we are supplying our codes for the digits 1 to 
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9. Whatever symbols our receivers use to denote the digits 1 to 9, is their 
business. We are informing them of our symbols and we leave it to them to 
compile their own translation.

For technical reasons, our entire message has to be transmitted as a one 
dimensional sequence of binary pulses. However, in order to avoid the mind-
numbing effect on the terrestrial reader of reading and writing a message 
solely in terms of binary pulses, I will assume the translation into binary pulses 
to be transparent, of no further interest to the reader and focus on the process 
of carefully introducing each new symbol and its use. For example, from this 
point on, where we have identified the codes for the first nine integers, I will 
refer to them simply by:

1  2  3  4  5  6  7  8  9  

and understand that on transmission they are always translated into the 
unique groups of binary pulses defined by the ASCII table.

For readability, symbols which have been introduced in this way are printed in 
bold and described as “acquired”. Thus, as a symbol is acquired, it turns 
bold. The broad aim is to transmit predominantly bold examples, with only 
one or two new (non-bold) symbols to be decoded from context. 

For example, suppose we transmit (binary pulse representations of) the 
following:

2 $ 1 @ 3      1 $ 1 @ 2      3 $ 4 @ 7      5 $ 2 @ 7      2 $ 2 @ 4      2 $ 6 @ 8 
     
A receiver would not need many examples to guess that the unknown  
symbols $ and @ coded for our + and = respectively. We could transmit many 
more such examples to confirm these guesses.  More convincing perhaps, 
would be to send extended uses of these symbols, such as

2 $ 1 $ 3 @ 6            2 $ 2 $ 1 $ 2 @ 7              2 $ 1 $ 4 @  2 $ 2 $ 1 $ 2 @ 7 

This “guess and confirm” process for helping a receiver decode our symbols 
is a highly efficient strategy (and a powerful technique in terrestrial code 
breaking).

Here I have used the symbols $ and @ merely to demonstrate the strategy to 
the terrestrial reader. In the actual message we would simply transmit the 
binary representations of + and = (00101011 and 00111101) and leave it to 
our receivers to decode their meaning and translate into their equivalents.

In a similar way, examples such as 

2 + # = 2     # + 5 = 5      4 + # = 4     3 + # = # + 3 + # = 3    

should quickly convince a receiver that the new symbol codes for our zero 
symbol 0 (00110000), so our receivers would append this new symbol and its 



translation to their dictionary. Meanwhile as senders we would add 0 to our 
table of acquired symbols:

0   1  2  3  4  5  6  7  8  9   +   =

Notice that the space symbol  “ “ (00010000), which I have used 
indiscriminately for readability, needs a formal introduction at some stage. For 
now we simply note that this is one symbol whose use we can convey by 
incrementing the time intervals between groups of pulses.

This is a good point to transmit the following:

illustrating our use of place value (base 10) to represent larger numbers. 
Technically, we need to arrange that groups of digits are separated by longer 
time intervals than the constituent digits, as indicated. This is also a good 
opportunity to introduce … the “and so on” symbol group (00011101  
00011101  00011101)

Our number system can be usefully confirmed by many examples such as

8 + 4 = 12      6 + 5 = 11      7 + 6 = 13      9 + 8 = 17      12 + 92 = 104      

We could also transmit ten pulses followed by the binary groups 1 0, etc. for 
further confirmation.

We now introduce negative numbers and, in the process, reintroduce and 
sharpen our representation of positive numbers. We transmit the sequence:

…  - 8   - 7   - 6   - 5   -4   - 3   - 2   - 1    0   +1   +2   +3   +4   +5   +6   +7   +8   … 

The two new superscripts are coded by two new ASCII codes distinct from 
anything else so far transmitted. We are careful to use entirely new symbols 
to flag positive and negative numbers to avoid any ambiguity with the 
operations add and subtract, a courtesy - to our shame - we do not extend to 
our school children, generations of whom we continue to baffle with our 
sloppy use of the one symbol + for two distinct meanings. The new symbols 
serve to flag two varieties of numbers, which still increment away from zero, 
but now in opposite directions. 

While the sequence by itself should be sufficient to identify the new symbols, 
as always, we supply copious examples:

0    1    2    3    4    5    6    7    8    9    10    11    12    13    14    15    16    17 
18    19    20    21    22    23    24    25    26    27    28    29    30    31    32    
33    34    35    36    37    38    39    40    …     93    94    95    96      97    98  
99    100    101    102    103    104    105    106    107    108 109    110    
111    112    113    114    115    116    117    118    119    120    121    …    
998    999    1000    1001    1002    …



+2  +  +3  =  +5         +4  +  - 2  =  +2        -3  +  +2  =  -1      -7   +   -15  = -22

Earlier examples identified the effect of the add operator acting on a domain 
of purely positive numbers. Its effect there was to sum the net number of 
increments from zero, all steps being in the same direction. The introduction 
of negative numbers results in two directions from zero. The add operator is 
still seen to sum the net number of increments from zero, but now negative 
numbers count as steps in the opposite direction. Clearly, earlier examples, 
while technically correct, illuminated only a limited domain of action of the add 
operator. 

Having established the general “guess and confirm” method for introducing 
new symbols, it is time to increase the instruction rate. We now introduce 
subtract as the operator that inverts the add operation. If starting with  +4, the 
action of the add operator and +3 results in +7, then starting with +7, the action 
of the subtract operator and +3 is to return to the original +4:

                             add    +3
            +4                                       +7     
                           subtract   +3

We send examples of the form:

+4  +  +3  =  +7 +7  -  +3  =  +4

+4  +  - 3  =  +1 +1  -  - 3  =  +4

-4  +  +12  =  +8 +8  -  +12  =  - 4

to identify the new subtract symbol. 

Similarly, we introduce the multiplication operator through examples such as

+4  * +5 = +20        +3  *  
- 21 = - 63        - 3  *  +6 = - 18        - 12  *  

- 45 = +540

The division operator is the operator that inverts the multiplication operation:

                          multiply by  +5
            +4                                       +20     
                           divide by  +5

and send examples such as 

+4  *  +5 = +20 +20  /  +5   =  +4  

-3   *  +6 = -18 -18  / +6   =  -3  

-12  *  -45 = +540 +540 /  -45  =  -12  



While we do not have a problem sending numerous examples of 
multiplication, we would soon run into difficulties with division. For example, 
we have not described our number representation sufficiently to transmit the 
result of  +5  / +2, not yet having introduced the decimal point notation.  

Suppose we send examples such as:

2 * 100  +  3 * 10  +  6 * 1  +  5 / 10  +  7 / 100    =    236.57

4 * 100  +  0 * 10  +  1 * 1  +  0 / 10  +  7 / 100    =    401.07

0 * 100  +  3 * 10  + 9 * 1  +  2 / 10  +  8 / 100    =    39.28

6 * 100  +  8 * 10  + 0 * 1  +  5 / 10  +  0 / 100    =    680.5

where the only new symbol is  “.” (00101101) embedded in the final value of 
each example. These examples demonstrate the use of our decimal point 
notation. They also warn of our habit of dropping leading and trailing zeros. 

Let’s recall our purpose is not an exhaustive instruction course in elementary 
arithmetic, but merely to supply sufficient examples to allow receivers to 
acquire our symbols and their use. 

This would be a good time to introduce the symbols   (not equal to),  
(approximately equal to),  (less than),  (greater than),   (less than or equal 
to),  (greater than or equal to), for which the reader will have no trouble 
constructing suitable examples. 

We can introduce the exponent operator through examples like:

3^4 = 81    16^0.5 = 4    10^ -3 = 0.001     2^0.5 = 1.4142135623730950488…

Summarising, we have introduced positive, zero and negative numbers, the 
operations of add, subtract, multiply, divide and exponents, the comparing 
symbols =     etc. and the decimal point number system. Now would be a 
convenient time to summarise progress in an end of chapter exercise (with 
answers of course), and introduce a few interesting numbers.

We might for example send a few thousand digits beginning  

pi = 3.141592653589793238462643… 
e = 2.718281828459045235360287…. 
gamma = 0.577215664901532860606512…

the decimal approximations of three mathematically significant constants we 
know as , e, and . Later, we will be able to provide definitions and methods 
to calculate these to any desired accuracy.

We might also take this opportunity to introduce the useful brackets notation:



(3 + 5) = 8 4 * 8 = 32 4 * (3+5) = 4 * 3 + 4 * 5

4(3+5) = 4 * 3 + 4 * 5

The last example also exposes our habit of dropping the multiplication symbol 
where possible. The above examples could be usefully summarised by

a*(b + c) = a*b +a*c a(b+c) = ab + ac

a general statement of the fundamental distributive law of arithmetic. In fact, 
this might be a good time to collect together and present as a whole all the 
fundamental laws of arithmetic.

Suppose now we transmit the following examples:

3 + x  =  7 x  =  4

8  -  x  =  6 x  =  2

3 * x  = 54 x  =  18

19334.52  x  =  749.4 x  =  25.8 

This time we actually transmit the ASCII code for the symbol x (01111000). 
These examples clearly demonstrate the manipulation of symbols for the 
purpose of evaluating an unknown, a basic use of algebra. 

We can identify a summation notation and various standard results in series 
via examples of the form:

S(r=1,10; r)    =    1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10                   =   55

S(r=1,n; r)      =    1 + 2 + 3 +   …   + (n-2) + (n-1) + n                      =   n(n+1)/2

S(r=1,n; r^2)   =  1^2 + 2^2 + 3^2 + ….+ (n-2)^2 + (n-1)^2 + n^2  =  n(n+1)(2n+1) /6

S(r=1,n; r^3)   =  1^3 + 2^3 + 3^3 + ….+ (n-2)^3 + (n-1)^3 + n^3  =  (n(n+1)/2)^2

Here is a suitable time to make good our promise to define some 
mathematically useful notations and constants:

n! = n*(n-1)*(n-2)*(n-3)…*5*4*3*2*1

pi / 2  =  (2/1) * (2/3) * (4/3) * (4/5) * (6/5) * (6/7) …

e =  1 + 1/1! + 1/2! + 1/3! + 1/4! …



By now, where we have introduced some forty symbols, it seems clear that 
we can continue to introduce each new symbol of mathematics in terms of 
previously acquired symbols. Further examples might introduce particular and 
general forms of the quadratic, cubic and quartic equations and their 
solutions, leading onto complex numbers.

We can identify the differentiation operator D and its inverse, the integration 
operator I, by sending a list of standard results. This could lead onto a table of 
physically significant differential equations and their solutions and allows us to 
introduce exponential, logarithmic, trigonometric, hyperbolic, hypergeometric 
functions and so on. 

Throughout all earlier examples we could, if we wish, associate with each new 
symbol, a string of unexplained symbols. For example to the acquired symbol  
+  we could associate the string “add”  (01100001   01100100   01100100 ). 

Or we might prefer periodically to collect all newly acquired symbols together 
with their binary codes into a handy reference table and make the word 
association at that moment. Effectively we are starting a database (multi-level 
dictionary), each record of which refers to a particular symbol, each field of 
each record storing different kinds of information about that symbol. 

Symbol Code Word Substitute Sound Image Video

+ 00101011 add plus 100111…

= 00111101 equals is equal to 011101…

0 00110000 zero nought 011011…

For the moment we strive for simplicity, but later we might extend the number 
of fields per record. For example, we might append additional fields for

 substitutes ( “plus” is sometimes substituted for the word “add”)
 sound (the string “add” has an associated, digitally encodable, sound)
 pictures (words may have an associated image)
 video (an ordered sequence of incrementally evolving pictures)

This would be a good time to start the database. The point is that sooner or 
later we need to move onto other fields of interest, such as the sciences and 
arts, for which we require more extensive vocabularies. Identifying associated 
words, their pronunciation and images now is a natural progression and one 
which eventually helps to accelerate the learning process. 

Let’s make a start with a mathematical object and its associated image.  
Some mathematical equations are easy to associate with a simple image. For 
example the equation x2 + y2 = 100 associates quite easily with a circle. 
Consider the following message: 



23 * 23 = 529
00000000000100000000000000000010000000100000000000010000000000010000000001000000000000010000
00010000000000000001000001000000000000000001000010000000000000000010001000000000000000000010
01000000000000000000010010000000000000000000100100000000000000000001001000000000000000000010
01000000000000000000010010000000000000000000100100000000000000000001000100000000000000000100
00100000000000000000100000100000000000000010000000100000000000001000000000100000000000100000
000000010000000100000000000000000010000000000000000000000000000000000

pi = 3.141592653589793238462643… 
2*pi*r
pi*r^2
x^2 + y^2 = 10^2

The header statement recalls that 529 is equal to 23 * 23 and (it turns out) 
there are 529 subsequent digits, all 1 or 0. If this is not sufficient a clue, we 
note that 23 is a prime number, so there is also only one way to arrange 529 
digits in a simple regular manner, namely as a 23 by 23 square. In fact, 
almost any arrangement results in “ghost” circles, a pattern screaming out for 
a readjustment of the “horizontal hold” 
value to 23. Finally, as confirmatory 
clues, each of the remaining 
statements refers in some way to a 
circle. Sooner or later, our receivers 
will arrange the digits into a 23 * 23 
square.

Then, the “header information” will be 
seen as supplying the grid dimensions. 
1 codes for (say) a black blob, 0 codes 
for (say) a white blob, or any other 
distinguishable pair of pixels. 
Accompanying information provides data describing the image, or data 
described by the image, or a mix of both. 

Having demonstrated and further 
refined the method via a sequence of 
small simple images, it is then straight 
forward to give notice of increasing the 
parameters of the technique to more 
visually rewarding resolutions. For 
example, increasing the 529 digits to the 
equivalent of about 200,000 allows us to 
send the accompanying evocative 
image (available in full colour from 
nssdc.gsfc.nasa.gov/photo_gallery)

It is interesting to recall that some forty years ago, schoolboys from 
Manchester Grammar School intercepted, identified and decoded just such a 
radio signal from space. They were able to supply the first close up pictures of 
our moon, ahead, and much to the annoyance of, the Russian owners of the 
space craft transmitting the signals. 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



With words and images, we can rapidly introduce geometry and trigonometry 
and further expand the acquired vocabulary. Right angled triangles, 
Pythagoras’ Theorem, Pythagorean Triples, Angles, Trigonometric functions, 
and even Fermat’s Last Theorem are all accessible. For example, 

if  (xZ and yZ and zZ and nZ and n>2)  then  x^n + y^n  z^n

… is a complete statement of Fermat’s Last Theorem. We would have had to 
previously introduce: if, then, and,  (belongs to), and Z (the set of all positive 
integers), but by now all that’s fairly routine. A statement of Fermat’s Last 
Theorem is one thing however. We would no doubt wish to postpone its proof 
for a while. That proof, as Sherlock Holmes might say, is a two pipe problem.

Other proofs though, are more accessible. For example, the proof that the 
square root of 2 cannot be equal to the ratio of any two whole numbers, the 
proof of the existence of an infinite number of prime numbers, Pythagoras’ 
theorem, etc. The transmission of an ordered sequence of logical statements 
comprising a mathematical proof is an important threshold in our message 
construction. We are starting to write joined-up maths.

By now we have assembled a large body of examples and terminology, 
greatly expanded our database of associated words and begun to write 
mathematical prose. Having used the fact that all of mathematics can be 
derived from counting, we now go on to use the ability of mathematics to 
describe “unreasonably well” the observable universe. 

The first task must be to establish some fundamental units of measurement in 
terms of which all subsequent data is referenced. While here on Earth we 
seem prepared to operate under unholy mixtures of units (eg. meters, miles 
and knots; litres, imperial gallons and US gallons, and let’s not even mention 
currencies), resulting in confusion and disasters on a depressing scale, we 
cannot afford such ambiguity in our initial message. We first introduce an 
identifiable unit of mass and, as usual, leave our receivers to translate into 
their preferred units. 

We note that wherever we look in the universe, and for billions of years into 
the past, we see the same fundamental components of matter behaving in 
exactly the same ways – same mass, same periods of oscillation, same 
spectral lines of radiation. A few fundamental particles interacting with each 
other under a few mathematically specified laws of interaction. The quantum 
nature of the universe allows us to identify universally significant phenomena 
with simple numerical values. A table of such numbers therefore serves to 
characterise matter in a very distinctive and universally recognizable manner.  

For example,   1.0072766    1.0086652    0.0005486  are the masses of the 
proton, neutron and electron respectively, three of the most ubiquitous 
particles in the universe. In fact the proton to electron mass ratio, 1.0072766 / 
0.0005486 = 1836.086,  is one of the most recognizable numbers in particle 
physics. So, if we transmit 



proton mass = 1.0072766    
neutron mass = 1.0086652    
electron mass = 0.0005486    

this might be sufficient for the alert receiver to decode, not only the 
fundamental unit of mass in question, but also the word “mass” (since it 
appears in each reference) and, as everything else is now known, our labels 
proton, neutron and electron. 

Whatever, the following table of numbers would decide the matter and confirm 
any initial guesswork:

It takes no great knowledge of atoms to guess, and subsequently check, that 
the first three whole numbers specify the number of protons, neutrons and 
electrons, respectively, in some ninety-two chemically distinct and universally 
available varieties of atoms.

The significance of the numbers  1.0072766    1.0086652    0.0005486,  if not 
obvious before, would now be apparent from the fourth number, identifiable as 
the mathematical sum of the atom’s constituent masses: 

1 * 1.0072766    + 0 * 1.0086652    + 1 * 0.0005486    =  1.0078252

55 * 1.0072766    + 78 * 1.0086652   + 55 * 0.0005486   =  134.106718

92 * 1.0072766    + 146 * 1.0086652    + 92 * 0.0005486  = 239.9850379
   
The table identifies our unit of mass: that value for which the mass of the 
carbon atom (with 6 protons, 6 neutrons, 6 electrons) takes on the exact value 
12. The fifth number, which is always slightly smaller than the fourth, is 
recognizable as the experimentally observed mass of the atom, all stable 

1 0 1 1.0078252 1.0078250 0.0000002 H
2 2 2 4.0329808 4.0026030 0.0303778 He
3 4 3 7.0581364 7.0160050 0.0421314 Li
4 5 4 9.0746268 9.0121830 0.0624438 Be 
5 6 5 11.0911172 11.0093050 0.0818122 B
6 6 6 12.0989424 12.0000000 0.0989424 C
7 7 7 14.1154328 14.0030740 0.1123588 N
8 8 8 16.1319232 15.9949150 0.1370082 O
9 10 9 19.1570788 18.9984030 0.1586758 F

10 10 10 20.1649040 19.9924390 0.1724650 Ne

…

55 78 55 134.1062718 132.9054330 1.2008388 Cs

…

92 146 92 239.9850379 238.0507860 1.9342519 U



atoms in nature being observed to have a characteristically smaller mass than 
the mathematical sum of their constituent parts.

The sixth number, the difference of the previous two, and known to us as the 
mass defect, is a very significant physical quantity being a measure of the 
energy entombed in the atom. The seventh entry is our symbol for this 
chemical species of atom, which we supply to associate all future references. 

We now identify a fundamental unit of time. All atoms have built in clocks and 
identical atoms tick (electronically oscillate) at identical rates. For example, a 
an atom of Cesium, in common with all other Cesium atoms in the universe in 
the same electronic configuration, undergoes 9,162,631,770 electronic 
oscillations per second. We adopt the time taken for one such oscillation as 
our fundamental unit of time, in terms of which all other measurements of time 
can be expressed. 

We communicate this to our receivers by another data table, each line of 
which identifies a particular atomic transition together with its observed 
number of oscillations per unit time, and for which the Caesium entry records 
1.000000. We supply these simple and universally recognizable numbers for 
a convincingly large number of atomic transitions. Effectively, we are 
transmitting a table of discrete energy levels of atoms, a numerical rainbow of 
the elements.

Given now the universal nature and constancy of the speed of light throughout 
the universe, we can define a fundamental unit of length as the distance 
travelled by light in one fundamental unit of time. Again, this identification is 
most easily made through a table listing the lengths (in the new units) of 
universally available systems, for example chemical bond lengths within 
various molecules.

Having introduced some fundamental units, the chemical elements and their 
symbols, we can extend this knowledge to include their associated names, 
pronunciation, images, numerically identifiable physical and chemical 
properties (eg. mass density, electrical conductance, Young’s Modulus) etc., 
amassing a large body of associated vocabulary in the process.

We can then go on to perform an entirely analogous, but more extensive, 
review of the chemical and biochemical compounds, H2, O2, CO2, HCl, NH3, 
H2O, OCS, CH4, CH3CH2OH, …fatty acids, amino acids, sugars, ADP, ATP…, 
complete with names, physical and chemical properties (eg. bond lengths, 
angles, shapes, electron orbitals, molecular chains, rings, helixes, modes of 
vibration and rotation, reaction sequences etc). We can specify and chart the 
entire map of biochemical pathways used by living forms on this planet.

If all this appears a little demanding, technically, we should recall that modern 
radio technology is capable of transmitting some 109 pulses per second, 
sufficient to send all twelve volumes of the Oxford English Dictionary in a few 
seconds. 



It is clear by this stage we will have acquired a large vocabulary and a level of 
exposition comparable to the average technical reference work, maybe not 
flowing and metered prose, but nevertheless a clear connected stream of 
information and underlying concepts. In terms of vocabulary and grammar, we 
have reached a reading age of about seven, although via a completely 
different route to that of our early years.

It probably doesn’t serve our purpose much longer to continue the painstaking 
translation of our knowledge in this “guess and confirm” manner. Now we 
simply start transmitting entire standard works of reference and let our 
receivers perform the necessary translation, cross-referencing and 
associational mappings of our language. 

After all, this is not too different to the way we, here on earth, pass on 
information to successive generations: a starter vocabulary of a few words, a 
graded set of books, dictionaries and encyclopaedias and subsequent referral 
to standard works for more detailed inquiries. We see at work the same 
process of learning by association, except, instead of pointing to an object 
and saying, for example 

mummy    teddy    sweetie    sunny    stars   

we point to objects available to our receivers and say

     3     add     proton      oscillate       star

Though we set out from different places the destination is the same.

The size of the starter vocabulary required before dictionaries can be used to 
increase that vocabulary, is a tricky question. An informal poll among staff 
here puts estimates between 20 and 2000 with a mode around 800. With 
entire dictionaries now available on CD, it might be possible for the 
enthusiastic computer buff to check this using a clever bit of programming. 
Let’s now put the finishing touches to our menu of suggested reading.

The choice of starters and main course, described in some detail above, 
result from the necessity to establish a starter vocabulary by referring to 
objects and processes immediately available to our receivers. That done, we 
can now move on to more interesting fare. As Desert, may we suggest a 
selection from our literature? Maybe here we do hesitate a little - should we 
alert our guests to the wickedly delicious richness of human expression 
arising from our continued use of several thousand different languages? 
Maybe not. Perhaps we simply download a library of suggested reading and 
dictionaries, and leave them to it. 

After that, hopefully replete, perhaps they might care to relax with a little of our 
music, art and entertainments? Anyway, whatever we send we would, surely, 
append an RSVP ASAP.



Technically, we should expect some clever 
decodable tricks (such as fractal compression) 
to hide away huge amounts of data until 
required. 

But more important than what we would send 
and how, is the insight gained into what, one 
day, we might receive. If we have not 
considered this we might not recognize what is 
sent when it does arrive… if it hasn’t already. 

If you wish to participate in SETI 
(Search for Extra-terrestrial 
Intelligence) you can now download 
a simple screen saver from the SETI 
website 
http://setiathome.ssl.berkeley.edu

Rather than bored goldfish drifting 
across your screen, your computer 
slack time can be used to analyse 
the latest signals received by the 
Arecibo radio telescope, as part of 
the world-wide SETI-at-home 
project. 

Mankind’s perceived role in the universe has suffered a sad decline over the 
centuries. The ancients would have us centre-stage, living on a flat earth, with 
the sun and moon hauled daily in chariots across the sky for our 
entertainment.

Copernicus and Newton relegated the Earth to one of six rather minor bodies 
moving in simple mathematical homage to the Sun. Since Newton, 
astronomers have progressively relocated the Sun to just one fairly 
unremarkable star among billions, far from the centre of an unremarkable 
galaxy, itself just one galaxy among billions. Very recently, many other 
planetary systems, both established and in the very process of formation, 
have been discovered in orbit around nearby stars.

Observations of the early universe show an 
almost unbelievable uniformity in initial 
physical conditions, with variations across 
the observable universe of less than one 
millionth of a degree temperature difference 
throughout the early phases. 

The particles of our bodies and our world 
are the same particles, occur with the same 

 

http://setiathome.ssl.berkeley.edu/


relative abundances and obey the same laws of interaction, as in stars of the 
most distant galaxies. 

Many of the biochemical precursors for life on Earth have been synthesised in 
the laboratory and detected in vast quantities in interstellar space. All life 
forms found on Earth use the same molecular code to record, maintain and 
improve their chemical blueprint from one generation to the next. A large 
fraction of human DNA is identical to that of many other species. 

The discovery of intelligent life elsewhere in the universe will come as just one 
more reality check to mankind’s perceived role in the scheme of things. 

The day the digits come will be a defining moment for everyone on Earth. 
Nothing will ever seem quite the same way again. To know another intelligent 
life form exists elsewhere in the universe will change our perspective forever. 
We ought to start thinking about the implications.



Appendix – ASCII table (first 128 codes)

Dec Binary Sym  Dec Binary Sym Dec Binary Sym Dec Binary Sym

0 00000000 NUL 32 00100000 SP 64 01000000 @ 96 01100000 `
1 00000001 SOH 33 00100001 ! 65 01000001 A 97 01100001 a
2 00000010 STX 34 00100010 " 66 01000010 B 98 01100010 b
3 00000011 ETX 35 00100011 # 67 01000011 C 99 01100011 c
4 00000100 EOT 36 00100100 $ 68 01000100 D 100 01100100 d
5 00000101 ENQ 37 00100101 % 69 01000101 E 101 01100101 e
6 00000110 ACK 38 00100110 & 70 01000110 F 102 01100110 f
7 00000111 BEL 39 00100111 ' 71 01000111 G 103 01100111 g
8 00001000 BS 40 00101000 ( 72 01001000 H 104 01101000 h
9 00001001 HT 41 00101001 ) 73 01001001 I 105 01101001 i

10 00001010 LF 42 00101010 * 74 01001010 J 106 01101010 j
11 00001011 VT 43 00101011 + 75 01001011 K 107 01101011 k
12 00001100 FF 44 00101100 , 76 01001100 L 108 01101100 l
13 00001101 CR 45 00101101 - 77 01001101 M 109 01101101 m
14 00001110 SOH 46 00101110 . 78 01001110 N 110 01101110 n
15 00001111 SI 47 00101111 / 79 01001111 O 111 01101111 o
16 00010000 DLE 48 00110000 0 80 01010000 P 112 01110000 p
17 00010001 DC1 49 00110001 1 81 01010001 Q 113 01110001 q
18 00010010 DC2 50 00110010 2 82 01010010 R 114 01110010 r
19 00010011 DC3 51 00110011 3 83 01010011 S 115 01110011 s
20 00010100 DC4 52 00110100 4 84 01010100 T 116 01110100 t
21 00010101 NAK 53 00110101 5 85 01010101 U 117 01110101 u
22 00010110 SYN 54 00110110 6 86 01010110 V 118 01110110 v
23 00010111 ETB 55 00110111 7 87 01010111 W 119 01110111 w
24 00011000 CAN 56 00111000 8 88 01011000 X 120 01111000 x
25 00011001 EM 57 00111001 9 89 01011001 Y 121 01111001 y
26 00011010 SUB 58 00111010 : 90 01011010 Z 122 01111010 z
27 00011011 ESC 59 00111011 ; 91 01011011 [ 123 01111011 {
28 00011100 FS 60 00111100 < 92 01011100 \ 124 01111100 |
29 00011101 GS 61 00111101 = 93 01011101 ] 125 01111101 }
30 00011110 RS 62 00111110 > 94 01011110 ^ 126 01111110 ~
31 00011111 US 63 00111111 ? 95 01011111 _ 127 01111111 �


	S(r=1,n; r) = 1 + 2 + 3 + … + (n-2) + (n-1) + n = n(n+1)/2
	S(r=1,n; r^2) = 1^2 + 2^2 + 3^2 + ….+ (n-2)^2 + (n-1)^2 + n^2 = n(n+1)(2n+1) /6
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