
Infinity and Beyond  (scary version)

The Hitchhikers Guide to the Galaxy begins, 

“Space is big. You just won't believe how vastly, hugely, mind-
bogglingly big it is.” 

The key word here is believe. Observing the existence of 
1022 stars across 1023 km of space, is one thing. Believing 
the implications of such numbers is something else. 

But if you think space is big, you should 
book a round trip to Infinity. There, 
mathematical peaks soar indefinitely 
over your head, bottomless ravines gape 
beneath your feet. Monstrous creatures 
lurk in ambush across a land where none 
of the familiar rules of mathematical 
engagement apply. Few mathematicians 
go near the place and many refuse even 
to acknowledge its existence. And for 
good reason. 

Georg Cantor, the first pioneering mathematician to explore 
infinity - and return to tell the tale - went quietly mad, dying 
a lonely death in a German mental asylum. Anyone foolish 
enough to venture there today risks forfeiting academic 
funding and medical cover. Yet, none of the main results 
are difficult to understand, just difficult to believe. That’s the 
scary thing. Infinity is understandable, just not believable. 

As a breed, philosophers are generally less reticent 
expressing definitive opinions on infinity and mathematics.

I cannot help it, - in spite of myself, infinity torments 
me. Alfred de Musset.

Man is equally incapable of seeing the nothingness from which he 
emerges and the infinity in which he is engulfed. Blaise Pascal

Would they but pay some attention to philosophy, they must see 
immediately that there can be precisely seven planets, no more, no 
less. Georg Hegel

Mathematics has the completely false reputation of yielding 
infallible conclusions. Its infallibility is nothing but identity. 
Two times two is not four, but it is just two times two, and 
that is what we call four for short. But four is nothing new at 
all.  Johann von Goethe.

                                     Eternity is a very long time, especially towards the end. Woody Allen
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Before embarking on a hazardous journey it’s prudent to warm up with a few 
practice exercises. These questions won’t deal with infinity itself, although 
they will involve some pretty big numbers - and some unsettling conclusions.

There are some 50,000 grains in this 1 Kg bag of rice. If 
you place 1 grain on the first square of a chess board, 2 
on the second, 4 on the third, 8 on the fourth, and so on, 
doubling the amount on each successive square, quite 
surprisingly you run out by the 16th square. 

Ordering a one tonne pallet just to be on the safe side 
(there’s always Monday curry) you are slightly piqued to run out again, this 
time at square 26. Still, that’s almost halfway down, can’t be far now, so you 
get on the phone and order a 1000 tonne shipment. That, it turns out, just gets 
you to square 36.   

You’ve just blown the school’s entire food budget for a year, not to mention, 
triggered panic buying on the London commodities market. But you’ve studied 
PPE and you admire Lady Thatcher, so you’re not for turning back now. You 
take the decision and send out for whatever it takes to finish the job. To the 
sound of lorries rumbling down Palace Street, you sit down for the first time 
and do the calculation. Let’s see,          

1 + 2 +  4  +  8  + 16  + 32 + …

1 + 21 + 22 + 23 +  24   + 25 +  …  + 263       =      264 – 1        1019     

Well, 1019 grains doesn’t sound too bad, at least you can write it on the back 
of a postage stamp. So what’s that in weight? At 5x104 grains to the Kg that 
weighs in at about 2x1014 Kg. The world’s human population is nudging 7x109, 
so that’s about 30 tonnes of rice per person. Sufficient to feed the entire world 
for 100 years. Or if you prefer, a rice mountain 300 times the size of Mount 
Everest sitting on Green Court. Time to make another phone call.

1019 grains might seem as good as infinity in the 
real world, so do we ever need to worry about an 
actual infinity? Are there real world problems which 
require infinity’s existence? It’s a slightly circular 
question since you can always come back and say 
you don’t consider such and such  a real world 
question, but yes there are.

Zeno’s famous paradox of the tortoise and the 
hare, for example. Let’s use some actual numbers, 
you can always mystify the problem later. 

Zeno of Elea



The hare runs at 10m/s, the tortoise at 1m/s. The hare graciously gives the 
tortoise a 10m head start. 

After 1 second the hare has caught up with where the tortoise was, but the 
tortoise has moved on another 1m in that time. 

After a further 1/10 second the hare has caught up with where the tortoise 
was, but the tortoise has moved on another 1/10 m in that time. 

After a further 1/100 second the hare has caught up with where the tortoise 
was, but the tortoise has moved on another 1/100 m in that time. 

Clearly this process will continue for ever. So while the hare runs faster than 
the tortoise, it never completely catches up with the tortoise, there’s always a 
little more distance to cover.

Now, you are missing the point of the paradox if you point out, quite correctly, 
that in 9

10  seconds the hare and tortoise will be shoulder to shoulder at 9
100 m. 

The point of the paradox is, both arguments appear flawless, yet they reach 
different conclusions. Mathematics is in trouble if different routes lead to 
different conclusions, even if the simpler perspective yields a more 
“acceptable” answer. The fallacy must be found and resolved if mathematics 
is not to dissolve into a sea of contradictory half truths. 

The fallacy occurs at the underlined word, never. Mathematicians are human 
beings (just) and humans are obliged to communicate via the vagaries of 
human language. Usually these ambiguities are fairly mild and obvious and 
easily avoided through careful definitions. However this is an instance where 
the subtly different interpretations of “never” result in a contradiction. 

The first argument uses the word “never” to mean the hare cannot cover an 
infinitely many intervals of distance required to draw level with the tortoise. 
But while the total distance is formulated as the sum of an infinite number of 
finite amounts, the total itself need not be infinite in value. And in this case, is 
not infinite, but actually a very sensible finite value:

0 10 11

Zeno of Elea



9
100

1000
1

100
1

10
1 ...111.10110  ⋯

Zeno’s paradox is only a paradox if you insist the sum of an infinite number of 
fractions has to be infinite.

Of course, the use of arguments involving infinity, when perfectly straight 
forward alternatives are available, could be argued a perfectly crazy thing to 
do. However, as is so often the case in mathematics, practice and familiarity 
with infinity in problems where simpler methods provide a consistency check, 
is but preparation for the day when handling infinity itself becomes 
unavoidable. So with that endorsement, let’s now consider infinity proper.

Here is a 2m long piece of wood. You can’t see it because it’s a mathematical 
piece of wood, a line segment of length 2. If I cut it into two equal parts, I get 
two identical line segments each of length 1. The total length of course 
remains unchanged at 2:
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where those three little dots stand for “and so on for ever”. Congratulations, 
you have just calculated the sum of an infinite number of fractions 
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The result is only exactly 2 if you sum the infinite number of fractions.

There can be no sitting on the fence here, waiting to assess the philosophical 
fallout before accepting the result. The sum is necessarily 2. Any other 
conclusion, less than 2 or greater than 2, immediately leads to fundamental 
contradictions in elementary arithmetic.

Now I can take one of the smaller parts and do the same 
thing again. The total remains unchanged at 2:

Now I can take one of the smaller parts and do the same 
thing again. The total remains unchanged at 2:

Now I can take one of the smaller parts and do the same 
thing again. The total remains unchanged at 2:

And so on, and so on, and so on, 
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With this discovery, and a little practice, an entirely new mathematical tool 
called “series expansion” becomes available. For example, applying the “split 
in half” process to the individual terms themselves, yields:
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1 2 3 4 5 6 7 8 9 10 11
2  ...

2 4 8 16 32 64 128 256 512 1024 2048
= + + + + + + + + + + +

a less obvious, but equally interesting discovery about 2. 

Of course, there’s nothing special about 2. We could divide throughout by 2 

1 2 3 4 5 6 7 8 9 10 11
1  ...

4 8 16 32 64 128 256 512 1024 2048 4096
= + + + + + + + + + + +

and derive an equally useful expansion for 1. Armed with an expansion of 1, 
we can expand any number.

The modern perspective is actually the converse: Some infinite series do 
“consolidate” down to form the familiar whole numbers and fractions 
(collectively known as the rational numbers), but others (the vast majority in 
fact) do not. These latter series define an entirely distinct set of numbers 
called the irrationals, of which 2 and π are two famous examples.

4 4 4 4 4 4 4 4 4 4 4 4
...

1 3 5 7 9 11 13 15 17 19 21 23
π = + − + − + − + − + − +

1 1 1 5 7 21 33
2 2 ...

2 16 64 1024 4096 32768 131072
= − − − − − − −

Distressingly for them, the Greeks were the first to discover that whatever else 
2 was, it wasn’t a fraction, but required an infinity of fractions for its 
representation. I won’t test your patience with the proof, but again, it is 
surprisingly straight forward. By consistently representing every number - 
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rational or irrational - as an infinite series, mathematics today confers equal 
status on all numbers, albeit at the cost of abandoning some naive 
perspectives.

Once admitted to the mathematical workshop, working with 
an infinite number of terms becomes commonplace. Infinite 
series turn out to be an Aladdin’s cave of mathematical 
techniques and results. Leonhard Euler was acknowledged 
master of the technique, dismantling and re-assembling 
terms as a child might play with Lego bricks. In his hands, 
infinite series proved amazingly versatile, settling a vast 
range of problems and ushering in completely new areas of 
mathematics. 

Euler was especially fond of expansions of the type

1 1 1 1 1 1 1 1 1 1 1
 ...

1 2 3 4 5 6 7 8 9 10 11Z Z Z Z Z Z Z Z Z Z Z
+ + + + + + + + + + + =

for special values of z. For the particular value z = 2, Euler 
was able to calculate the sum:

2

2 2 2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1 1
...

1 2 3 4 5 6 7 8 9 10 11 6

π+ + + + + + + + + + + =

a deep and unexpected connection between the natural 
numbers and the circle. The calculation for z=2 is now 
called the Basal problem, but Euler made extensive 
calculations for other values of z. But neither Euler nor 
anyone since, has succeeded in summing the series for 
z=3. A golden opportunity for a modern day Goethe, 
perhaps.

Clearly, the total value of the infinite series will depend on the value selected 
for z.  But what if we now turn the question around and ask, for what value of 
z does the infinite series sum to a given value, say zero:

1 1 1 1 1 1 1 1 1 1 1
 ... 0

1 2 3 4 5 6 7 8 9 10 11Z Z Z Z Z Z Z Z Z Z Z
+ + + + + + + + + + + =

This is the famous Riemann equation. At the outset, it’s not 
immediately obvious there is any value of z which causes the 
series to sum to zero. And indeed, there are no real values of z 
satisfying this equation. However if we allow z to wander off the 
real axis into the complex plane, rather surprisingly we find an 
infinite number of z values satisfying this equation.

This set of values (a little confusingly called the zero’s of the Riemann 
equation) has some remarkable properties. For one thing the set is intimately 
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It’s not new, it’s what we 
call π2/6 for short.



Johann Goethe

connected with the set of prime numbers (it was a study of prime numbers 
which led to the formulation of this series in the first place). 

For another, the solutions all appear to lie exactly on the same straight line in 
the complex plane, x = ½. Of course, any 2 points will always lie on some line. 
Any three points generally won’t, so there’s something special if 3 or more 
points lie on the same straight line. To find that not three, but the first 1013 
zeros all lie exactly on the same straight line, as computer calculations have 
discovered, is suspicious to say the least, but to this day nobody knows if all 
the solutions lie on this line. A single exception would disprove RH.

The Riemann Hypothesis has become a kind of star-gate to another 
dimension of the mathematical universe, a portal through which totally 
unrelated fields of mathematics become strangely connected and unified. 
Intrepid explorers, tired of waiting for the train of rigorous proof to arrive, have 
already set off on foot to explore this land. So many strange and wonderful 
creatures have been discovered in this land (if it exists!), that many 
mathematicians will be devastated if RH proves false. The situation is so 
desperate, the Clay Institute of Cambridge, Massachusetts, is currently 
offering a prize of one million dollars to anyone who can settle the question 
one way or another.

Sooner or later, every school child learns to play the infinity game. 

This “and one” notion is, in fact, the present day basis for the construction of 
infinity. Consider the process of adding 1 repeatedly:

1 2 3 4

Clearly, the process either leads to 

(a) a finite number, or
(b) a non-finite number 

If it leads a finite number, then we can continue the process - we know how to 
add 1 to any finite number. Eventually, we are forced to either 

(a) conclude the process generates a non-finite value, or 
(b) surrender the assumption that we can add 1 repeatedly 

+1 +1 +1 +1

“What’s the biggest number in the world? 
Megagoogalsqillion! 

Wrong, knucklehead!
Megagoogalsqillion and one. Ha! Ha! Ha! You don’t know 
anything!” 



The non-finite value we elect to call infinity. You may harbour lingering doubts 
about the “repeatedly” aspect. If so, you need to re-examine every other 
repeated process which, until now, you have happily entertained. Such as 
adding 0 repeatedly (or equivalently, add 1 then subtract 1, repeatedly) 

1 1 1 1

If that process is unsafe, adding zero repeatedly, will eventually fail to return 
the original value. A very drastic revision of arithmetic would then ensue.

We have reached certain conclusions about infinity:
(a) Infinity is more a process than a value
(b) We generated this infinity via the “add 1” process (there may be others)
(c) No number bigger than infinity is accessible by adding (  1 )

Historically, the “add 1” process led to this infinity being called the “countable 
infinity”, since adding 1 is essentially counting. The first letter of the Hebrew 
alphabet, aleph, has been assigned to denote this infinity       (the zero 
subscript hints of bigger infinities to come).

Now while       is very unintuitive, it is comfortingly remote, and so long as we 
just stick to addition and subtraction, this infinity remains remote. Yes,      is a 
monster, but monstrously far away. It could be worse. In fact, it soon will be. 

Meanwhile,      itself has some very unintuitive properties. If you insist on 
comparing the number of terms in the two sequences, 

1, 2, 3, 4, 5, 6, 7, 8, 9, … (the set of natural numbers)
1, 4, 9, 16, 25, 36, 49, … (the set of square numbers)

you could be forgiven for imagining the first set contains very many more 
members than the second set. After all, the first sequence contains every term 
of the second sequence - and a lot more besides. On the other hand, written 
as

1,  2,   3,  4, … 

12, 22, 32, 42, …

it becomes clear there is a one to one correspondence between the members 
of each sequence, the first sequence effectively counting off the second 
sequence. The only mathematically consistent conclusion is that the sets 
contain exactly the same number of terms as each other. We say they have 
the same cardinality, aleph-null. You can’t increase      by adding to it a finite 
or even an infinite amount.

Similarly, you could be forgiven for imagining there are vastly more fractions 
than whole numbers. After all, between any two consecutive whole numbers 
you can always find two fractions, and between these two fractions, another 
two fractions, and so on. But it turns out there are just as many fractions as 
whole numbers, no more, no less, as Hegel might say. The cardinality of the 

+0 +0 +0 +0



rationals is precisely aleph-null. Once more, this is disconcertingly easy to 
prove (and equally hard to believe).

Start by laying out the fractions on a rectangular grid. All fractions with same 
numerator are ordered vertically and all fractions with the same denominator 
are ordered horizontally. It is clear that this listing will feature all possible 
fractions somewhere (many times over in fact, but that does not matter). 

Now trace a spiral path linking every fraction, moving out from the centre, and 
counting off the fractions in one to one correspondence with the integers. 
Since there is nothing to stop you doing this indefinitely, you have just proved 
the fractions have the same cardinality as the integers, aleph-null.

By now you are probably resigned to thinking that simply every transfinite 
quantity is aleph-null. Absolutely not so. The real numbers (the combined sets 
of rational and irrational numbers) turn out to be infinitely bigger than the set 
of fractions. Again, once seen, the proof is eerily simple.

Suppose the cardinality of the real numbers was aleph-null. Then, like the 
whole numbers and fractions, it would be possible to arrange them as a 
complete list, a tiny and very incomplete portion of which might be

…
…72930547923.09505783…
…83669484668.85798044…
…25736257943.58374456…
…14734724636.84457129…
…68333847979.99293886…
…32037388607.31528553…
…40832643913.23304004…
…59338284632.12648473…
…
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We will not require this list be ordered in any particular way, just complete. 
Every real number must feature somewhere in the list.

Now, starting at the decimal point of some number, proceed outwards in both 
directions highlighting successive digits 

…
…72930547923.09505783…
…83669484668.85798044…
…25736257943.58374456…
…14734724636.84457129…
…68333847979.99293886…
…32037388607.31528553…
…40832643913.23304004…
…59338284632.12648473…
…

Assemble the highlighted digits to form a new number, ….963.89508…

Finally, perform the digit shift  0→1, 1→2, … , 8→9, 9→0  to obtain 

 ….074.90619…

Of what conceivable interest, I hear you ask, could anyone ever have in this 
number? Well, it’s not on the list. You know, the list which we were very 
careful to stipulate was a complete list of all the real numbers.

For, wherever else this number is, it’s clearly not in the portion depicted, 
differing by at least one digit from each of the numbers featured. But by the 
same token it isn’t anywhere else in the list either, since by construction, it 
differs in at least one digit from every number listed. 

The only consistent conclusion has to be that, contrary to our initial 
assumption, the list is incomplete. The set of real numbers cannot be 
arranged in a list, and cannot therefore be put into one to one correspondence 
with the integers. Whatever else it is, the cardinality of the real numbers is not 
aleph-null. 

The attempt to determine the cardinality of the real numbers, and the acute 
hostility to his work, is what sent Cantor over the edge. Personally, he was 
convinced the cardinality of the real numbers was the next highest infinity         
and that it possessed the value  

               
= 2

Cantor spent the rest of his life trying to prove this result. Today, this 
conjecture is known as the continuum hypothesis, since it aspires to count the 
totality of points comprising a continuous curve. A little disappointingly for 
some mathematicians, it has now been proved to be …umm … unprovable. 



You can accept it as an axiom, and go on to successfully develop a self-
consistent mathematics of the infinite, or you can choose an alternative axiom 
and go on to successfully develop an alternative, self-consistent, mathematics 
of the infinite. 

Historically, the situation is analogous to the famous parallel postulate. 
Including the parallel postulate as a geometrical axiom permits the successful 
development of Euclidean geometry. Replacing the parallel postulate by an 
alternate but equally consistent postulate, on the other hand, allows the 
successful development of Non-Euclidean geometries known as hyperbolic 
and elliptical geometry. 

There is a general intuition among mathematicians that simple problems 
should beget simple answers and complex problems, complex answers. 
Although this is commonly the case in practice, it can be spectacularly wrong 
on occasion. Some simple problems yield the most unexpected complexity 
and, conversely, some complex problems can exhibit surprisingly simple 
solutions. 

I’d like to introduce you to a simple problem whose solution is a mathematical 
creature of unfathomable complexity, a creature of deep infinity which lives 
and breathes infinity, the Mandelbrot set. 

While we were happy to stick to add and subtract, infinity remained 
comfortingly far away. Not being used to seeing this monster clearly in the 
distance, makes it hard to recognise close up. Introduce multiply and divide 
and infinity comes up close. Unlike many of our earlier glimpses of infinity, you 
can get as close as you like to the Mandelbrot set, although rather 
frustratingly, you can never actually touch it. The Mandelbrot set is also 
intriguing for another reason - it is very much the discovery of that finite 
device, the computer. 

Choose a starting point ),( 11 yx  in the plane. From these coordinates, compute 

a second point ),( 22 yx  using to the formulas
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From the coordinates of the second point ),( 22 yx  compute a third point using 
the formulas,
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and so on, obtaining a sequence of points ),( 11 yx , ),( 22 yx , ),( 33 yx  ...  With a 
little spreadsheet experimenting, you quickly discover that, depending on your 
choice of first point, subsequent points either wander around near the origin 
indefinitely or accelerate rapidly away. However, it is strangely difficult to 



Benoit Mandelbrot

predict which sequences will diverge and which will not. A very intriguing 
image can be obtained as follows. 

Select an initial point. If after say 10 iterations, the point has wandered off 
more than say 1000 units away from the origin, colour the initial point white 
(depicting unstable). Otherwise colour it black (stable). The choices 10 
iterations and 1000 units divergence turn out 
to be quite arbitrary – similar results are 
obtained for a large spectrum of such choices.

Now repeat for a neighbouring point, and so 
on, systematically painting a black and white 
stability map for an entire region in the (x,y) 
plane. A simple BASIC program can be written 
to perform the whole process or you can 
download one of many such programs from 
the internet. 

The first surprise is the enormity of 
detail, given the simplicity of the 
iteration. The detail is 
extraordinary, and if we ask for 
improved resolution - a colour 
contour map of the slide to infinity - 
there it is, available simply by 
painting the initial points red, 
yellow, blue, green … according to 
whether it takes 10, 20, 30, 40… 
iterations to travel 1000 units of 
distance.

http://video.google.com/videoplay?docid=-3638096461401109182

The next surprise is mesmerising. The detail continues down through every 
scale. The computer image can be zoomed in indefinitely to witness a strange 
bottomless world of kaleidoscopic symmetry and complexity, regenerating 
itself on every scale. Fractals, as such objects are now called (since bizarrely, 
they can be shown to occupy a fractional dimension) are truly monsters from 
the depths of infinity, up close and personal. 

Although it took some time for his work to be accepted by 
mathematicians, in the end Benoit Mandelbrot fared a little 
better than Cantor. IBM allowed him to pursue his 
investigations on fractals while employed in a nominal 
capacity, before the mathematical community finally 
accepted fractals as entities worthy of serious attention and 
Mandelbrot worthy of academic employment.

http://video.google.com/videoplay?docid=-3638096461401109182


Today, infinity is no longer the esoteric mathematical abstraction it once was. 
Infinite processes can and do have finite consequences and important 
applications. Fractal compression for example, enables massive economies of 
information storage and transmission, enabling the commercial reality of a 
host of digital communication devices such a DVD’s and mobile phones. 

In science, the appearance of infinity 
in calculations has been traditionally 
greeted with howls of derision or 
despair, depending on whether you 
worked in the experimental or 
theoretical camps. The onset of 
infinite values traditionally signalled a 
flaw in the mathematical modelling of 
physical reality. Today, modern 
physics is having to rethink this 
instinct, as various indications point 
to the existence of real physical 
infinities operating at the limits of 
space, time and matter.   

Last year for the first time, physicists at CERN (Geneva) had to seriously 
consider whether tampering with space at small scales and high energies, 
might lead to the accidental creation of a microscopic black hole. All theories 
of such objects involve a singularity of space, the physical realisation of a 
mathematical infinity turning space inside out and isolating the interior of the 
black hole from the rest of the universe (but not the rest of the universe from 
the interior of the black hole).

In theoretical physics, “irreducible” infinities 
arise in the calculations of modern quantum 
electrodynamics, the physics of elementary 
charged particles. Here, infinites are routinely 
deleted to “enable” a finite answer. Feynman 
Diagrams constitute a well tested prescription 
for guiding physicists to which parts of infinity 
to retain, and which to delete. 

There’s no denying the practical efficacy of the process, some of the 
theoretical predictions of QED agreeing with measurement to better than ten 
significant figures. Of course, retaining a finite part of a calculation and 
ignoring the infinite part, is plain nonsense mathematically. It is also deeply 
unsatisfying, physically. One can only wonder what wealth of information and 
understanding of the physical universe is lost by consigning the more 
substantial part of the answer to the trash can.

Now it’s no longer taboo in science to report glimpses of infinity in the physical 
world, earlier sightings of the creature are being admitted. 

CERN particle accelerator



We’ve run out 
of things to say!

Socrates

An intractable but little known problem in the theory of Newtonian motion, 
formerly known as the small divisor problem, has over the past fifty years 
assumed such notoriety and interest that it is now called Chaos Theory. 

Chaos theory predicts the long term unpredictability of evolving real world 
systems such as: motion of magnets, ring particles of Saturn, Earth-asteroid 
collisions, stability of the solar system, weather, climate stability, species 
extinction, stability of financial markets, world peace, etc. The inevitability of 
small divisors in the governing dynamics ultimately causes all precision of the  
predicted motion to be lost over time. This phenomenon has become known 
as the butterfly effect. For planetary orbits, the prediction time is millions of 
years. For the weather, it can be less than a few days. Perhaps the British 
obsession for meteorological small talk has some purpose after all.

I’d like to end with a few philosophical speculations. Sometimes we say in 
desperation, “I don’t understand something”, when what we really mean is, “I 
don’t believe it”. Good tactics in the cut and thrust of everyday life, but it 
doesn’t work too well in mathematics. Like infinity, you might find the following 
hard to believe but, like Zeno’s paradox, that’s not the point. The point is that, 
ultimately, belief plays no role in mathematics, having proved an too 
unreliable guide in the past. Even its close cousin, intuition, is only allowed to 
ask questions in mathematics, never answer them.

The English language, in common 
with all other human languages, is 
composed from a finite number of 
letters. A word is a finite string of 
letters, so there are only a finite 
number of distinct words. A 
sentence is a finite string of words, 
so there are only a finite number of 
distinct sentences. Once these are 
said, nobody can ever say 
anything new again. Where does 
that leave human imagination, free 
will and consciousness? 



Philosophers assure us that, without language, we are incapable of thought. A 
finite language then condemns us to a finite set of possible thoughts. It would 
seem that in language and thought, we are as limited as that other finite 
device, the computer. The Turing halting problem of computational 
mathematics shows us what happens when a machine of 
finite language and memory, attempts to solve a nontrivial 
problem. The conclusion is rather depressing. Perfectly 
straight forward problems exist for which the machine 
never halts, never reaches a conclusion.

A finite language imposes another critical constraint on 
human thought. If we map each thought to a single point of 
a mathematical space, say the plane, then a finite set of 
thoughts necessarily maps to a finite set of points. If in 
addition, we arrange for similar thoughts to map to nearby 
points, we construct a kind of thesaurus of thoughts, or 
Thought Space.

But a finite set of points can never compose 
a continuous curve segment, however short, 
so every point in this space is necessarily 
discrete and isolated from its nearest 
neighbour by a certain minimum distance

0δ > . In other words, the space of human 

thoughts is not only finite but quantised, 
every thought differing from every other 
thought by a finite amount.

Now we have no reason to suppose that the 
phenomena of nature pay exact homage to 
human language and thoughts. Atoms, 

planets, stars and galaxies existed long before humans arrived on the scene 
to think about them. So we should not expect an exact coincidence of points 
representing the phenomena of nature with those representing human 
thought.

An entity of nature requiring for its understanding two distinct thoughts closer 
than δ  would be inaccessible to human thought, our thought space being 
insufficiently well populated to resolve the distinct elements. A sequence of 
thoughts (the blue track), such as we may wish to construct to establish the 
rigorous proof of some statement, could not therefore describe reality (the red 
curve) to better than a certain degree of precision. Like our visualisations of 
the Mandelbrot set, human models of nature must remain necessarily course-
grained to some degree, incapable of ultimate clarity. Any natural 
phenomenon requiring more than a certain precision of thought would be 
beyond human understanding.

While we have no reason to suppose that the phenomena of nature pay 
homage to human language and thoughts, we might indeed expect the 

Alan Turing

Thought space



converse. The evolutionary success of our species in finding and applying 
thoughts which resonate with reality, should lead us to expect that we steadily 
populate thought space more densely in regions where greater understanding 
of reality pays dividends in species survival.

Where human language proves under-populated in describing reality, new 
words (or more precisely, new thoughts assigned to old words) are 
introduced. If these thoughts find sufficient resonance with reality, they 
become established and rapidly propagate, leading to other new words and 
thoughts, until the once sparse region becomes populated to a density which 
better describes the real world. This Darwinian-like evolution of the landscape 
of thought space proves ruthlessly effective in the selection and propagation 
of successful thoughts. 

Over time, this process itself has developed into a highly evolved form of 
language called mathematics, barely recognisable in either form or purpose 
with its ancestral origins. Its numbers form the words, its equations the 
sentences and the laws of mathematics the grammar by which new sentences 
are constructed and new results and connections discovered. Infinite values 
and infinite processes arise quite naturally in this translanguage and are 
pivotal in developing tools of ever increasing power and resolution in our 
quest to understand ourselves and nature. 

Rather than evading the infinite, shouldn’t we be more concerned with 
escaping the shackles of the finite? To understand problems like human 
imagination, free-will and consciousness, perhaps we should be speaking the 
language of mathematics.



Blake’s poem

Eternity in an hour title

(recheck calculations)
Complex numbers – analytic continuation while numbers were 1-dim you had 
to step over infinity. As soon as you admit 2-dim complex nos. you can walk 
around infinities
Go to complex numbers, infinities are tamed (you can’t walk over infinity but 
you can walk round one)

Cantor – some biography

Zero and infinity are intimately related, zero as a local portal to infinity
There are different types of zero – linked to different types of infinity
If you admit continuity, as x → 0, 1/x → 
Time for x to reach 0 is finite, so time for 1/x to reach infinity is finite
Multiply just seems a more efficient way to do adds
Divide the way to undo the multiply. But divide is portal to local infinity
Mathematicians always very anxious to avoid dividing by zero
Problems where this happens implicitly leads to qualitative changes
But can divide by zero without knowing it. (viz andy’s 1 = 0 proofs)
Which infinity is 1/0?
p/q lines passing thru origin giving inconsistent values for 0/0
Touchline judges in the game y=1/x
Divergent 1/x and conditionally convergent series 
Conditionally convergent series have strange properties
Continued fractions
Conditionally convergent series rearrange to different sums

Need infinity to define probability Googal kolmogorov axioms probability
Probability theory requires infinity for its definitions
20% probability it will rain tomorrow?

But some physical observations demand strange theories.
Physics infinities number of atoms, size of universe, ration of strong force to 
gravity (see penrose)

Min and max merge leads to catastrophes
When it does happen, unintuitive discontinous things happen 
Switching in Algebra and Geometry representations can give catastrophes
Primes lnx/x
Primes 100 consecutive nonprimes
Russel and Whitehead, 2+2 =4 by page 120
Law of the excluded middle. 



Negative numbers, imaginary numbers and transfinite numbers “work of devil”
Google “transfinite numbers and god/devil”
Suppose you don’t know rules of chess but watching a game, you gradually 
start working them out. 

For a very modest £20 (check) you may have heard Lord X give his talk on *** 
last month, so when I was preparing my talk I asked the burser if the school 
will charge admittance tonight. A little disappointingly, I was told  no, and in 
fact at some stage Senior Management had considered paying a few people 
to attend, but eventually decided this would set the wrong tone. So I’m very 
glad to see… 

Just in case you wondered:  The Language of Thought Hypothesis (LOTH) 
postulates that thought and thinking take place in a mental language. This language 
consists of a system of representations that is physically realized in the brain of 
thinkers and has a combinatorial syntax (and semantics) such that operations on 
representations are causally sensitive only to the syntactic properties of 
representations. According to LOTH, thought is, roughly, the tokening of a 
representation that has a syntactic (constituent) structure with an appropriate 
semantics. Thinking thus consists in syntactic operations defined over such 
representations. Most of the arguments for LOTH derive their strength from their 
ability to explain certain empirical phenomena like productivity and systematicity of 
thought and thinking. 

School:
Google “transfinite numbers and god/devil/physics/psychology/consciousness/ 
freewill/imagination etc.
Google Negatives, imaginarys and transfinites “work of devil”
Google images of tortoises and hares
Google work of devil infinity beast numbers

Sources
Bridges to infinity book
Some big numbers Hardy Littleton, Rumanagan, Grahams number
Googal 10100   



Poster 
Ornate aleph-null characters 
Philosophy Goethe quote maths is identity and picture, Hegel picture quote
Mandelbrot set
Headline “Physicists fear new accelerator will create black hole” CERN pix
Feynman diagram
Socrates “We’ve run out of things to say”
Zeno’s paradox
Transfinite numbers work of the devil 
Latest Saturn image
Hitchhikers Guide image
See eternity in an hour…

total of grains is approximately 0.0031% of the number of atoms in 12 grams of 
carbon-12 and probably more than 200,000 times the estimated number of neuronal 
connections in the human brain (see large numbers).

Philosophy & infinity

Kant     Luminol & phenomenal

Leibinitz

Plato

Sufi

http://en.wikipedia.org/wiki/Large_numbers

